
KSU Swine Day 2015

Latest Update on K-State Applied Swine Nutrition Research

The ones that do the work!

2015 – Year of change

Depop

- Dr. Kyle Coble New Fashion Pork
- Dr. Jon De Jong Pipestone Finishing
- Dr. Josh Flohr Nutriquest
- Julie Feldpausch Purdue University
- Dr. Hyatt Frobose YGA Technologies
- Dr. Marcio Goncalves PIC
- Kyle Jordan
- Ethan Stephenson Pillen Family Farms

2015 – Year of change

Depop

- Dr. Kyle Coble
- Dr. Jon De Jong
- Dr. Josh Flohr
- Julie Feldpausch
- Dr. Hyatt Frobose
- Dr. Marcio Goncalves
- Kyle Jordan
- Ethan Stephenson

Repop

- Corey Carpenter
- Annie Clark
- Jordan Gebhardt
- Kiah Gourley
- Aaron Jones
- Jose Soto
- Hayden Williams
- Arkin Wu

"Holdovers" - Lori Thomas, Loni Schumacher

Congratulations!

- Kyle Coble ASAS Midwest Young Scholar; 1st place Ph.D. poster
- Jon De Jong 3rd place Ph.D. Oral abstract
- Hyatt Frobose 3rd place Ph.D. poster
- Ethan Stephenson 2nd place M.S. oral abstract
- Jordan Gebhardt 1st place undergraduate oral, Concurrent PhD/DVM Scholarship
- Cheyenne Evans 1st place undergraduate poster
- Roger Cochrane International Ingredients Pinnacle Award, Presidential Doctoral Scholarship
- Kiah Gourley Donoghue Scholarship
- Corey Carpenter Presidential Doctoral and Nunemacher Scholarships
- Annie Clark Donoghue Scholarship

Congratulations! Newest Team Member

Brooks Dean De Jong

 Born November 12th to
 Jon and Karis De Jong

2015 Swine Day Report

available at: www.KSUswine.org

- 42 papers
- 53 experiments
- 25,222 pigs

SWINE DAY 2015

THURSDAY, NOV. 19 K-STATE ALUMNI CENTER MANHATTAN, KANSAS

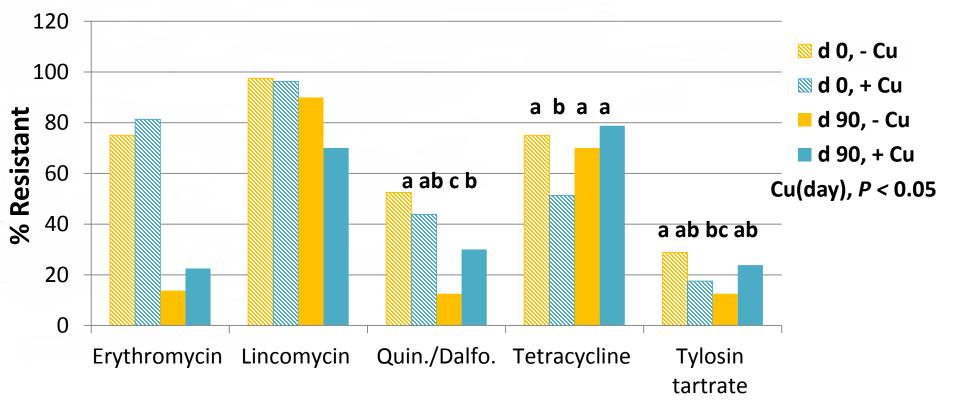
Antibiotic or Feed Additives for Nursery Pigs

- Pharmacological Cu, Zn and CTC consistently improved ADG and ADFI.
- Due to their additive benefits, pharmacological Zn and CTC could be included together in diets to get the maximum benefit in growth performance of weaned pigs.
- Neither pharmacological Cu nor Zn improved feed efficiency.
- Origanum essential oil elicited no growth benefits and worsened G:F.
- There were minimal carryover effects from any of these dietary treatments on subsequent nursery growth performance.

Feldpausch et al., 2015

Effects of Dietary Cu, Zn, and Ractopamine HCl on Finishing Pig Growth Performance, Carcass Characteristics, and Antibiotic Susceptibility of Enteric Bacteria

Feldpausch et al., 2015


Added Cu, Zn and Ractopamine in Finishing Pigs

- Dietary inclusion of 10 ppm ractopamine HCl for 28 d prior to marketing in heavy weight pigs dramatically improved carcass leanness as well as the feed and caloric efficiencies.
- Addition of 125 ppm Cu (CuSO₄) or 150 ppm Zn (ZnO) above basal premix TM levels in diets containing ractopamine HCl did not improve finishing pig growth or carcass performance.
- Over time, resistance to most antibiotics decreased or remained low for those with low baseline percentages.
- Extended feeding of 125 ppm CuSO₄ thru finishing period sustained Enterococcus spp. resistance to a few antibiotics.
- No adverse effects of Ractopamine HCl or 150 ppm added ZnO on antimicrobial resistance among bacterial isolates observed.

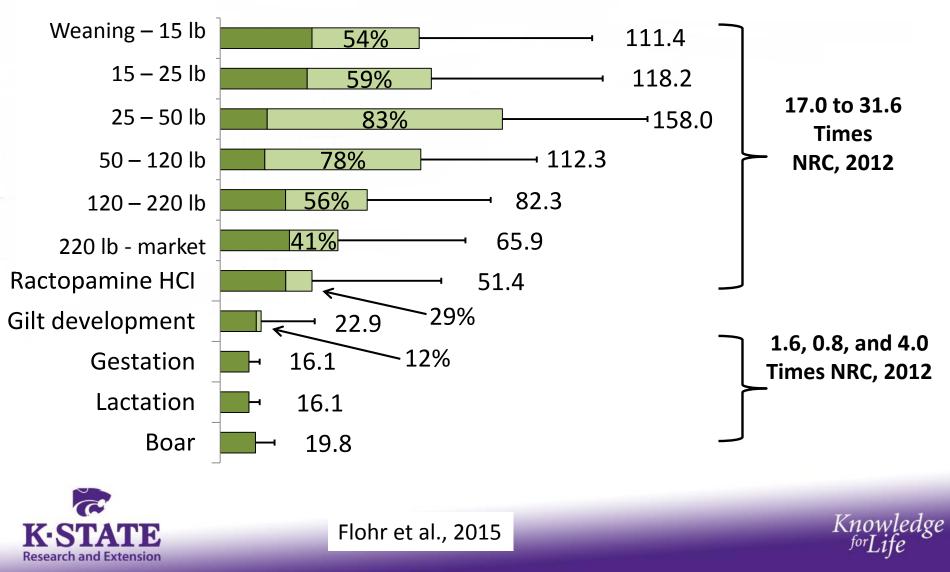
Feldpausch et al., 2015

Enterococcus spp. Resistance

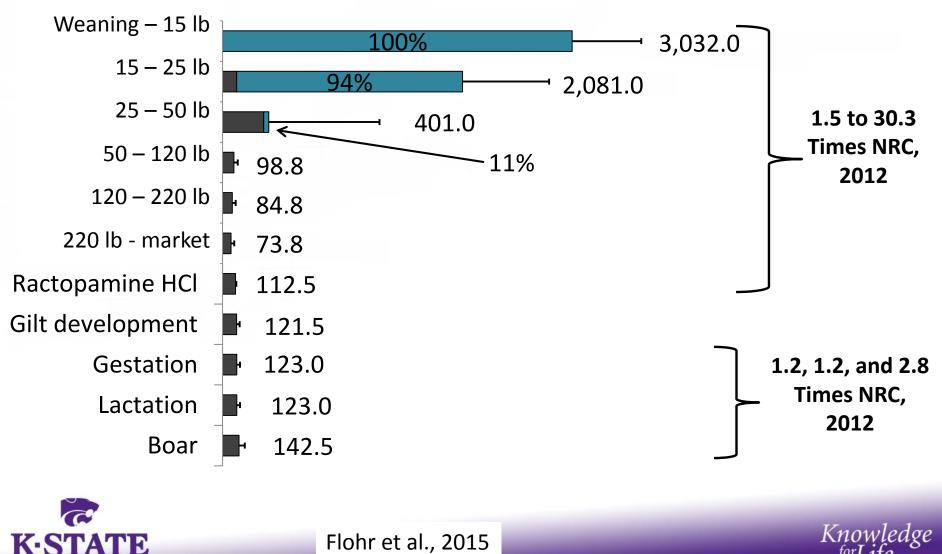
- By d 90, 0% resistance to chloramphenicol, gentamicin, linezolid, nitrofurantoin, penicillin, tigecycline, & vancomycin.
- No adverse effect of 150 ppm Zn or Ractopamine on bacterial resistance
 Knowledge
 Feldpausch et al., 2015

A survey of added trace mineral and vitamins concentrations used in the U.S. swine industry

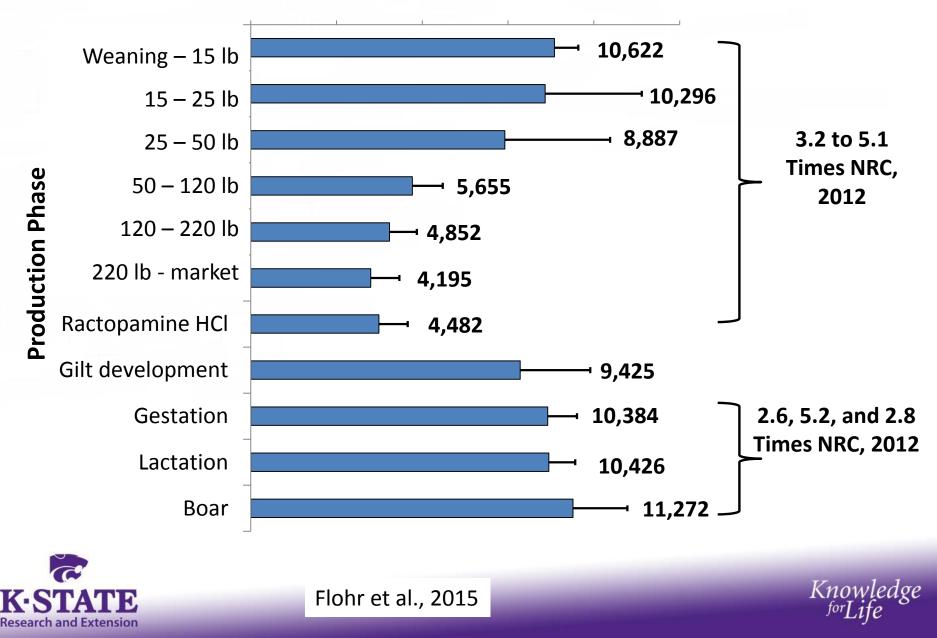
In total, 18 production systems representing approximately 2.3 million sows (~40% of the U.S. sow herd) participated in the survey.



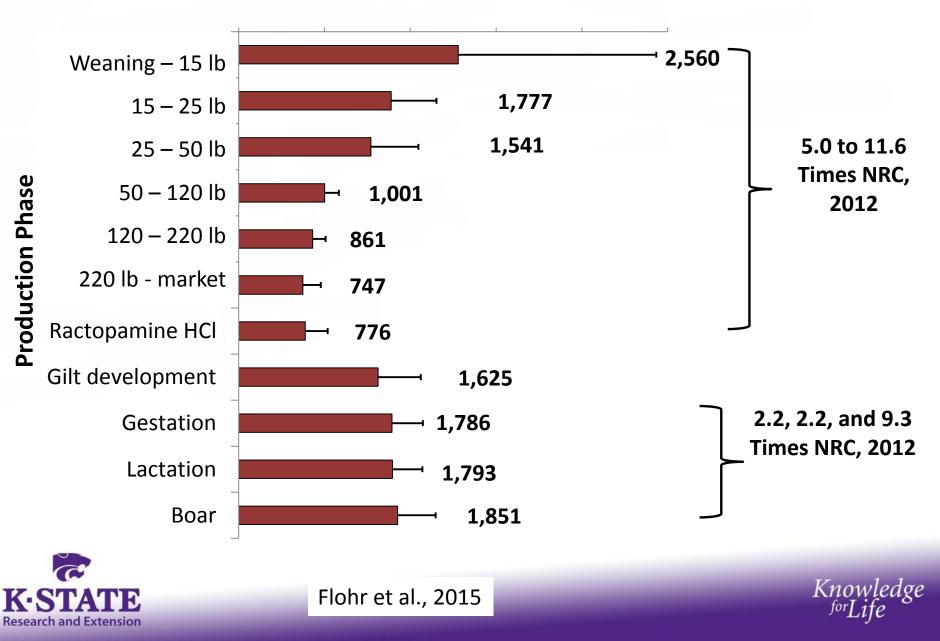
Flohr et al., 2015


Copper, ppm

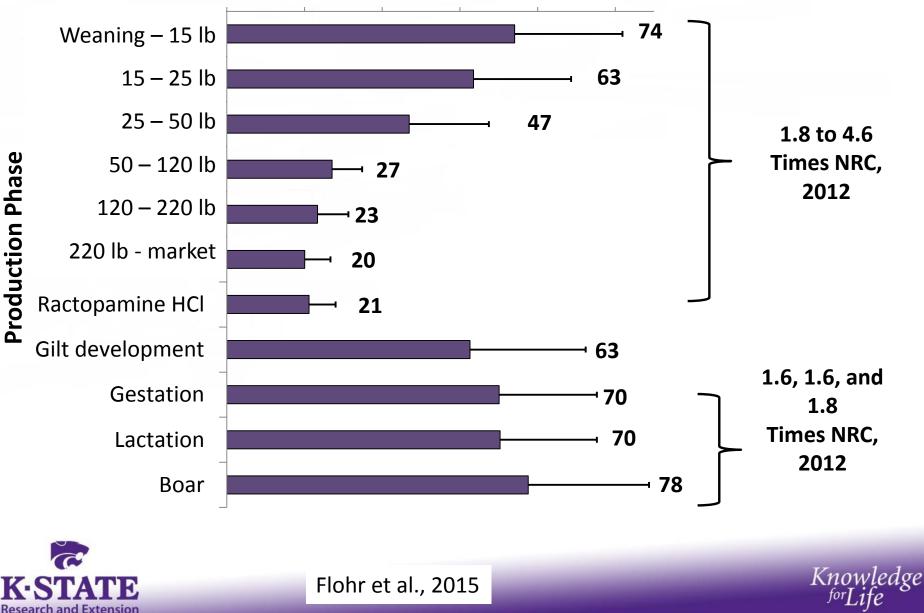
■ % respondents feeding growth promoting (> 25 ppm) levels


Zinc, ppm

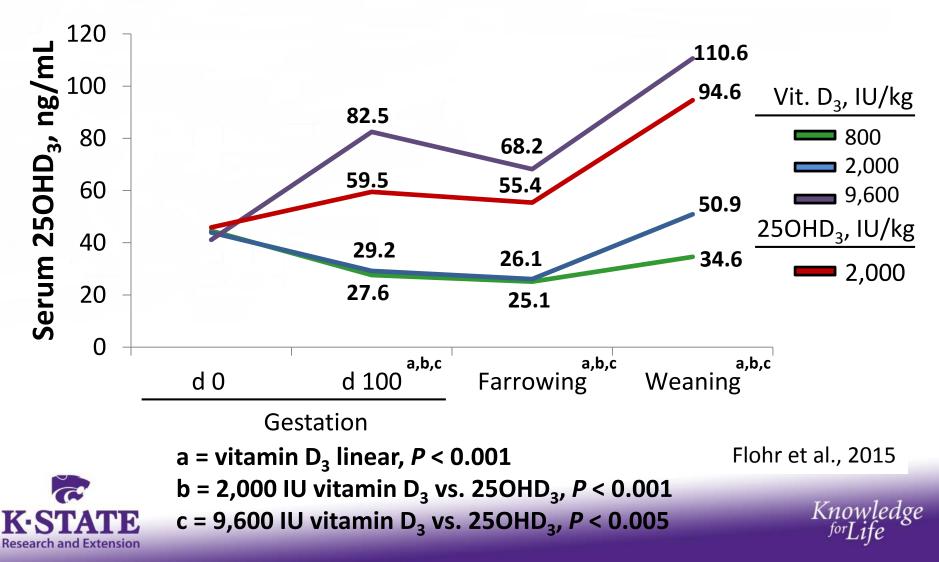
% respondents providing growth promoting (> 250 ppm) levels

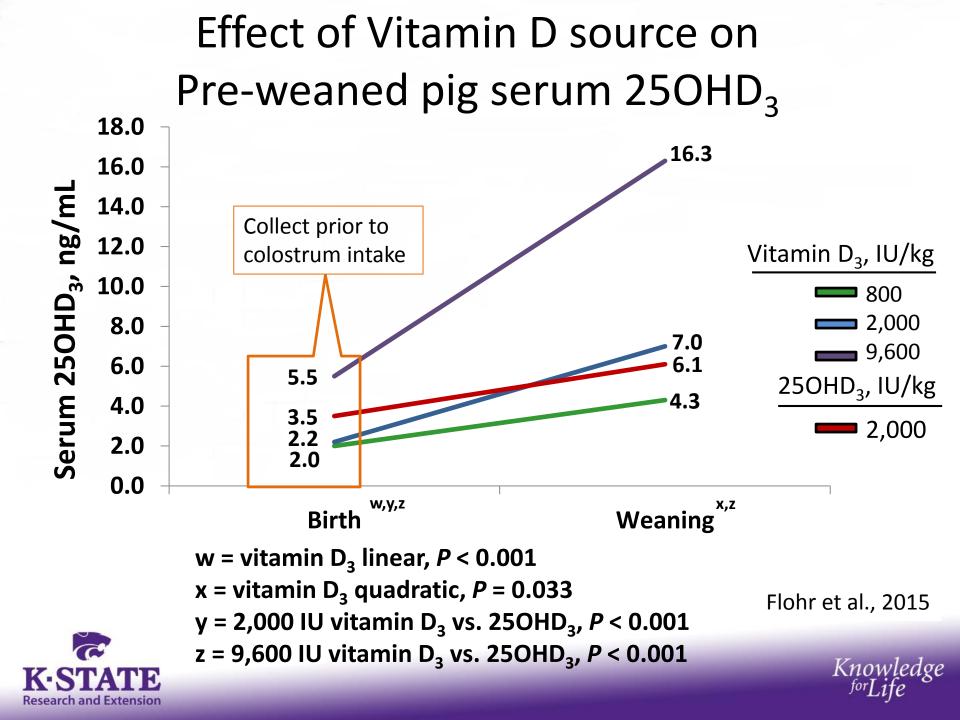


Research and Extension


Vitamin A, IU/kg

Vitamin D, IU/kg


Vitamin E, IU/kg

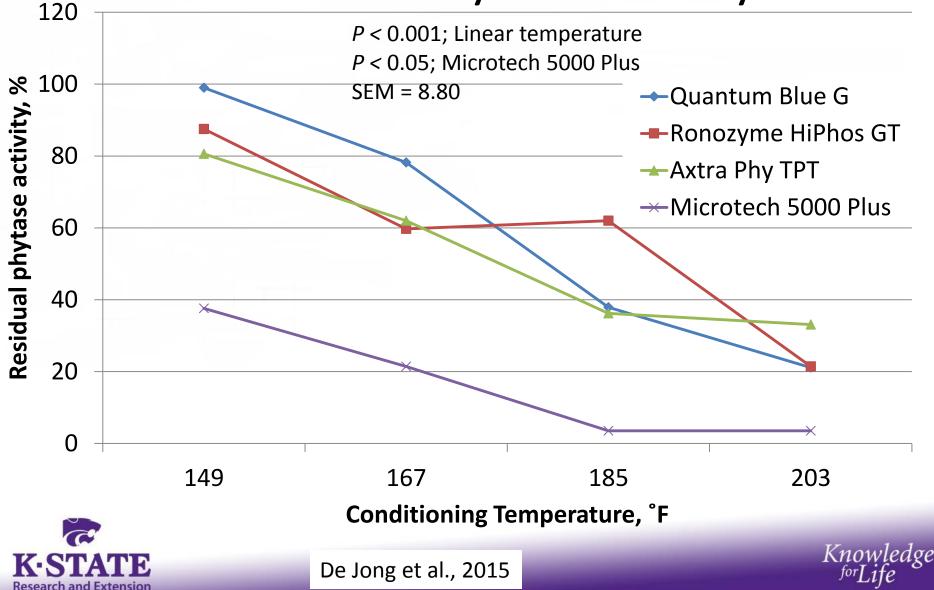


Effect of Vitamin D source on Sow serum 250HD₃

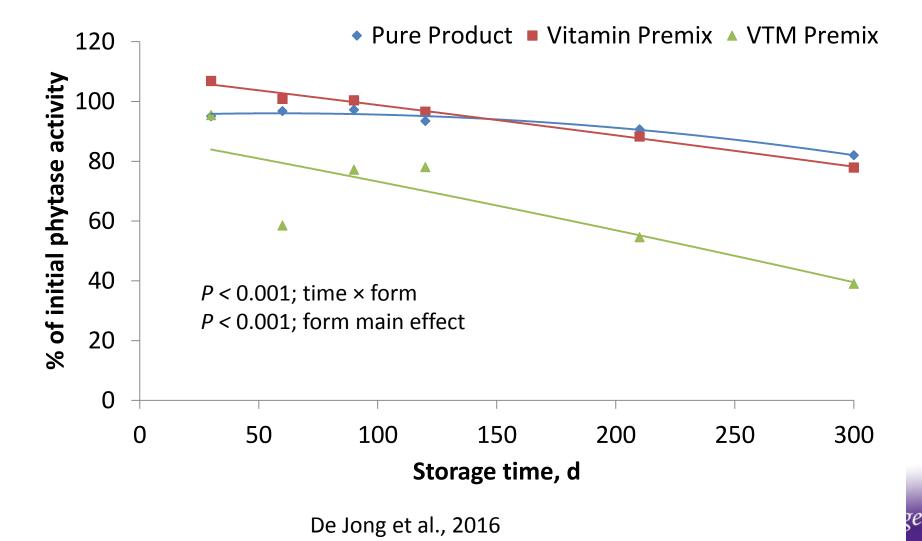
SEM = 3.5

Maternal × day interaction, P < 0.001

Effect of Maternal Vitamin D on Offspring Growth Performance


	1		Probability, P <						
	Vitamin D ₃			$250HD_3$		Vitam	າin D ₃	2,000 D ₃	9,600 D ₃
ltem	800	2,000	9,600	2,000	SEM	Lin	Quad	vs. 250HD ₃	vs. 250HD ₃
Average BW, Ib									
d 0	14.2	14.9	14.6	14.6	0.13	0.566	0.001	0.371	0.985
d 35	46.8	48.9	47.7	49.3	1.14	0.555	0.001	0.997	0.141
Market	292.2	300.9	297.5	303.1	6.31	0.480	0.006	0.866	0.240

Knowledge

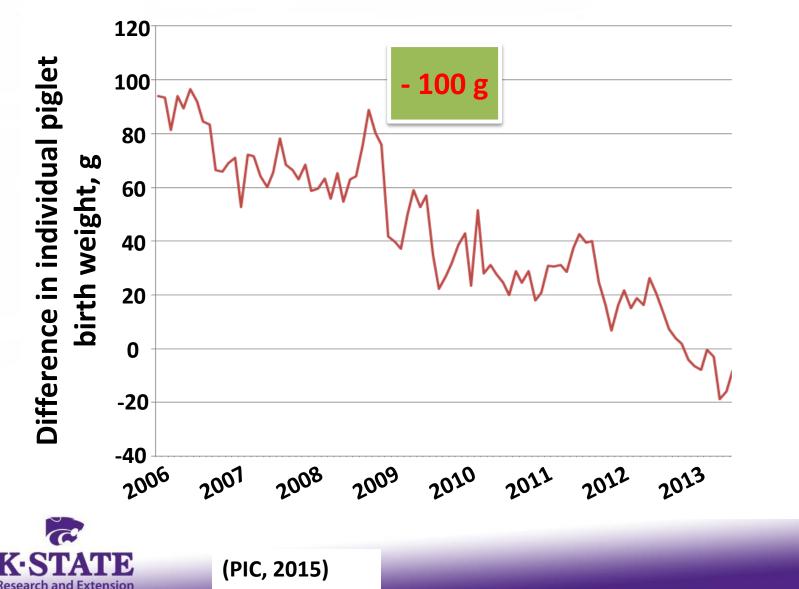


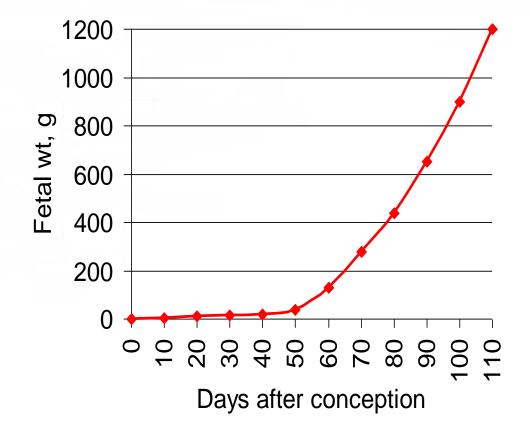
Flohr et al., 2015

Effect of Conditioning Temperature on Residual Phytase Activity

Phytase stability in pure product, vitamin premix, and VTM premix

Effects of AA and energy intake during late gestation on reproductive performance of gilts and sows under commercial conditions





Absolute difference in piglet birth weight compared to January 2014

Knowledge

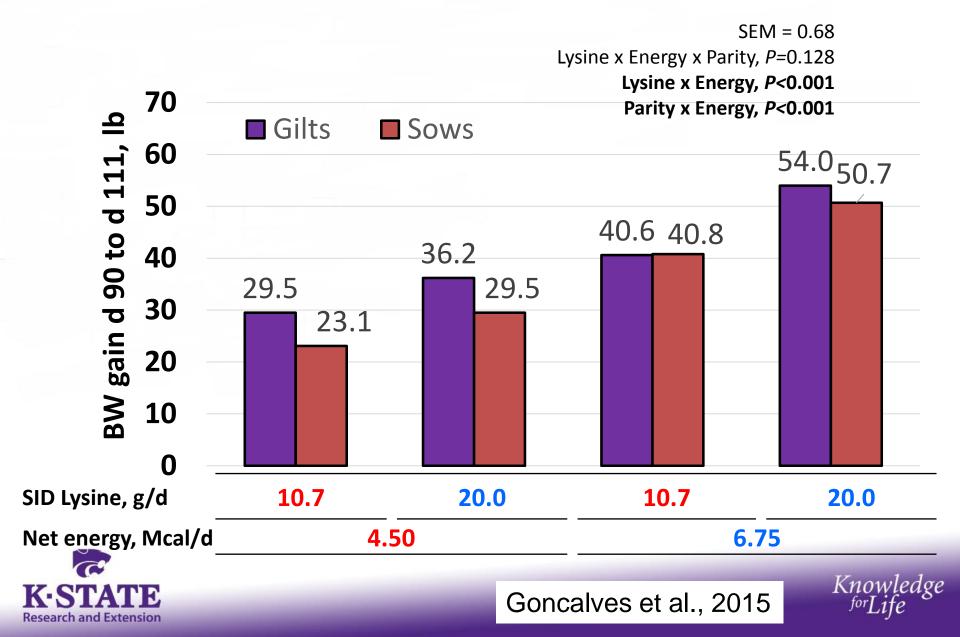
Recent sow research: Feeding during last 2 to 3 weeks before farrowing

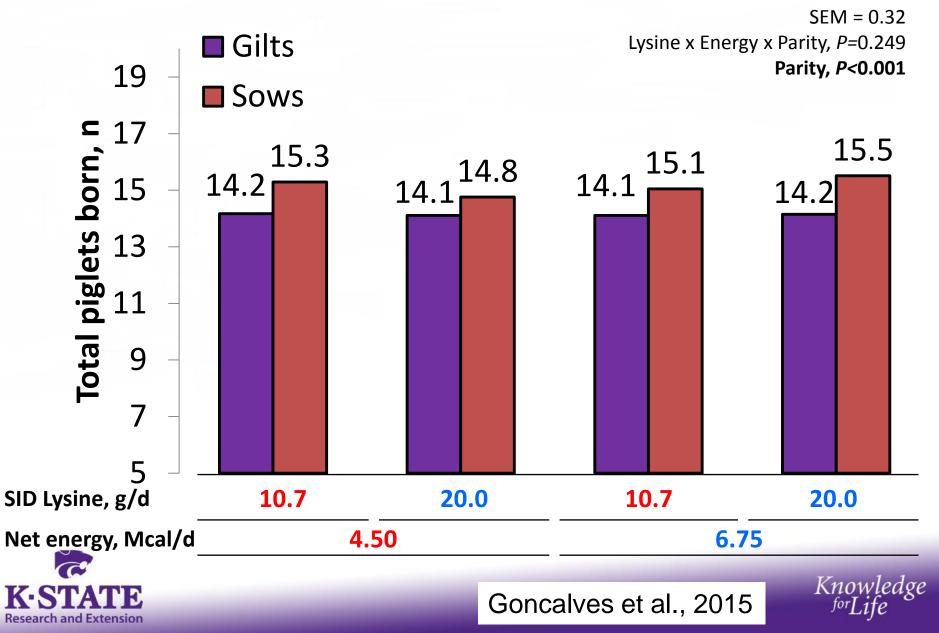
Objective

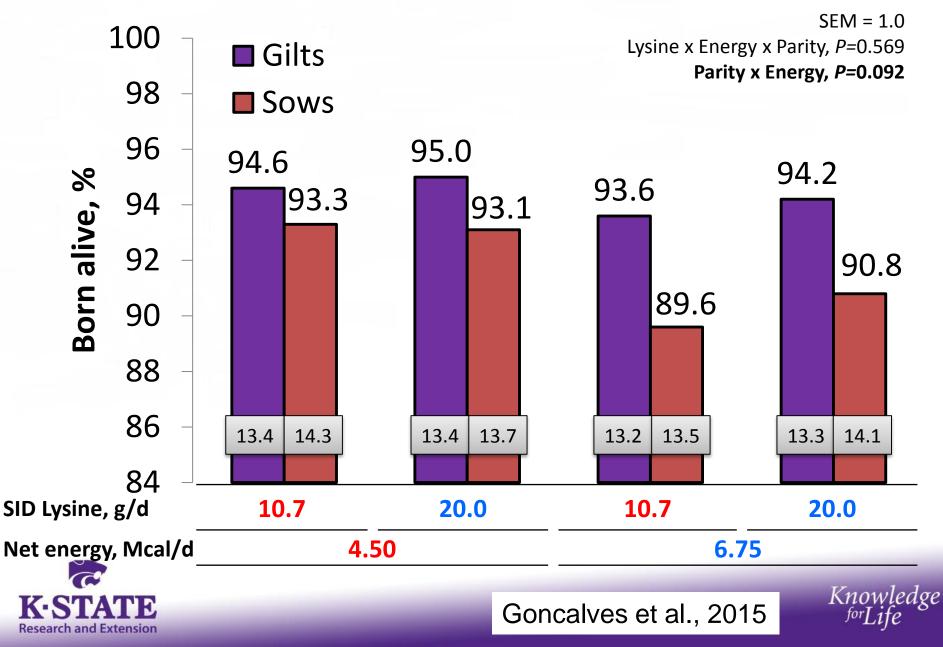
To determine the effects of lysine and energy

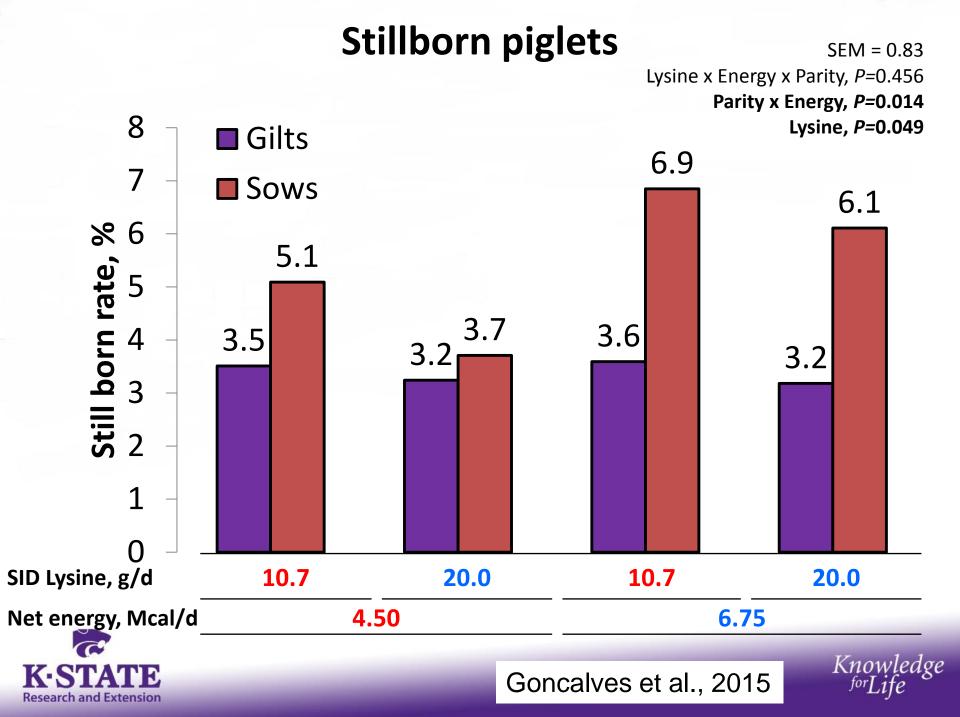
intake during late gestation on reproductive

performance of gilts and sows.






BW gain (d 90 to d 111)



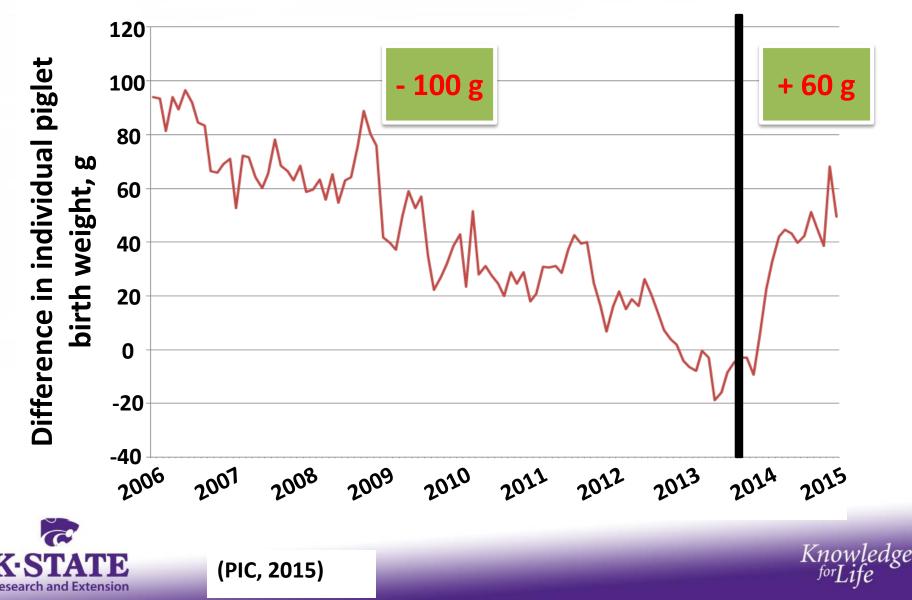
Total piglets born

Piglets born alive

Individual piglet birth weight (Born alive) SEM = 0.02

Lysine x Energy x Parity, *P*=0.489 Energy, *P*=0.011

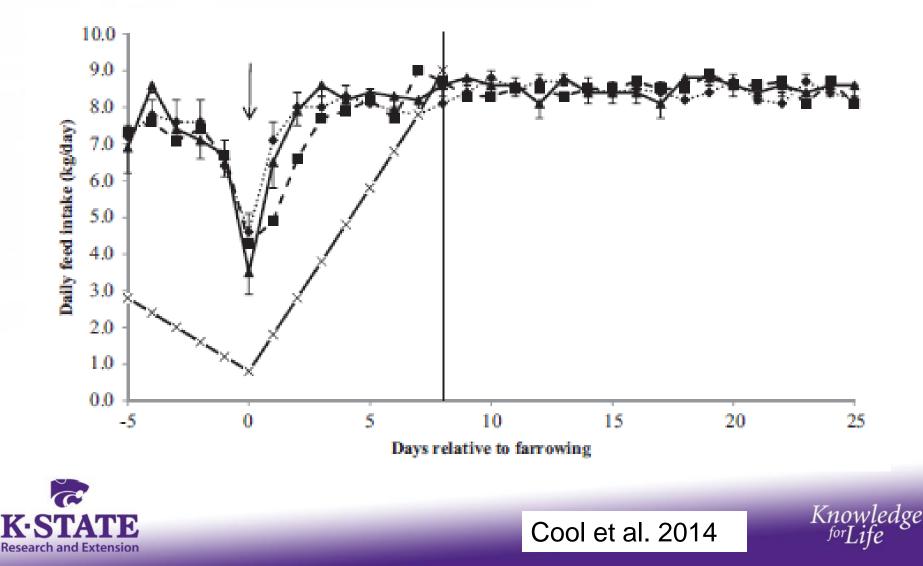
Parity, P<0.001 3.4 Gilts Sows 3.2 3.113.09 3.06 Piglet birth weight, lb 3.00 3.0 2.892.87 2.82 2.82 2.8 2.6 Energy effect: + 1 oz (30 g/pig) 2.4 Parity effect: + 3 oz (97 g/pig) 2.2 2.0 SID Lysine, g/d 10.7 20.0 10.7 20.0 Net energy, Mcal/d 4.50 6.75 Knowledge Goncalves et al., 2015

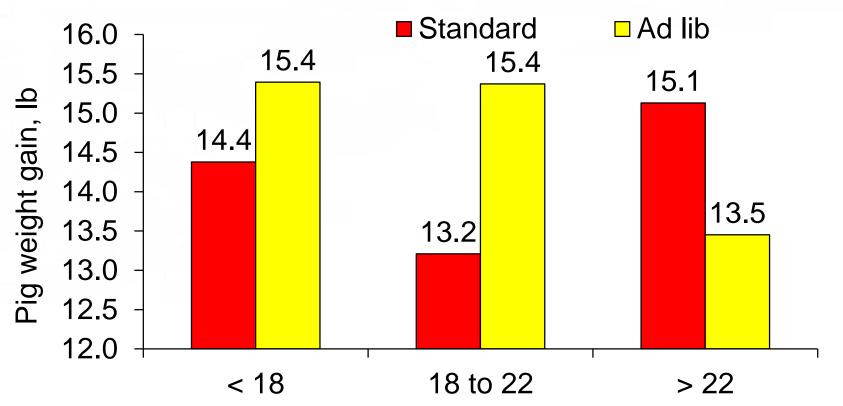

Research and Extension

Take home message

- 1. "Bump feeding" sows increases stillborn rate.
- 2. In this study, there was no evidence of differences in **total litter weight** between a diet with 0.59% SID Lys and 4 lb per day of a corn/soybean-meal based diet compared to the other dietary treatments.
- Average piglet birth weight (born alive) increased by
 30 g in females fed high energy.
- 4. Feed cost **per weaned pig increased** in \$0.21 when sows were fed 6 lb compared to 4 lb of a corn-soy diet during late gestation.

Absolute difference in piglet birth weight compared to January 2014


Full Feed before and Around Farrowing?



Ad lib vs restricted feeding from d -4 to d 7 of lactation

Influence of peripartum feeding of the sow on piglet weight gain

BF x feed *P* < 0.035

Sow backfat at farrowing, mm

Cool et al. 2014

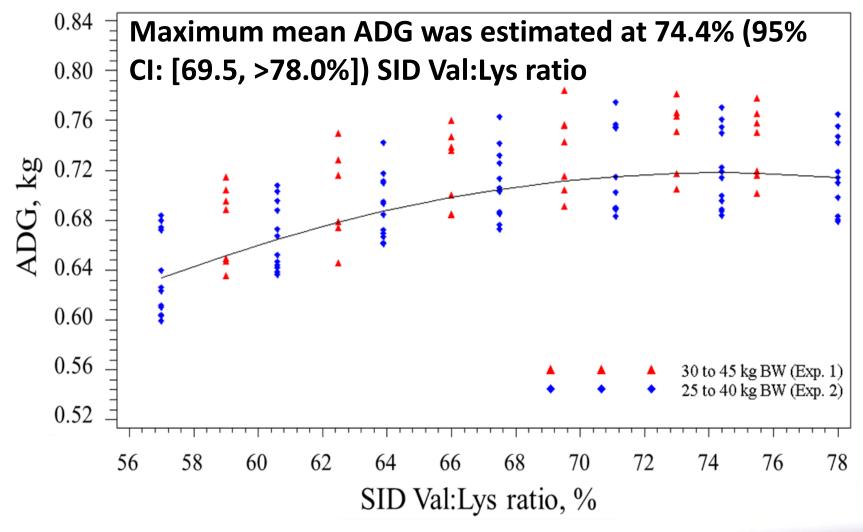
Recent sow research: Peripartum feeding conclusions

- For sows with less than 22 mm backfat at farrowing:
 - Ad libitum feed intake from placement in the farrowing room
 - Increase total feed consumption prior to weaning
 - Reduce loss of body weight and backfat
 - Improve litter growth and weaning weight
- Demonstrates need to not have sows over 22 mm backfat at farrowing

SID Trp:Lys ratio at different target performance levels of finishing pigs

	P	ercent of	f maximu	m perfor	mance, %	6
Item	95%	96%	97%	98%	99%	100%
ADG						
QP^1	17.6%	18.3%	18.9%	19.8%	20.8%	23.5%
G:F						
BLL ²	13.9%	14.5%	15.1%	15.7%	16.3%	16.9%
BLQ ³	14.4%	14.7%	15.2%	15.7%	16.2%	17.0%

 ${}^{1}\text{ADG} = -0.329 + 6.3 \times (\text{Trp:Lys ratio}) - 13.5 \times (\text{Trp:Lys ratio})^{2} + 0.015 \times (\text{Initial BW, kg}) - 0.000098 \times (\text{Initial BW, kg})^{2}$ ${}^{2}\text{G:F} = 0.599 - 1.0 \times (0.169 - \text{Trp:Lys ratio}) - 0.004 \times (\text{Initial BW, kg}) + 0.000017 \times (\text{Initial BW, kg})^{2}$ if SID Trp:Lys ratio < 16.9%


 3 G:F = 0.6014 – 0.603 × (0.170 – Trp:Lys ratio) – 20.0 × (0.170 – Trp:Lys ratio)² – 0.004 × (Initial BW, kg) + 0.000017 × (Initial BW, kg)² if SID Trp:Lys ratio < 17.0%

Goncalves et al., 2015

SID Val:Lys on ADG of 55- to 100-lb pigs

Data adjusted for random effects, heterogeneous

variance, and initial body weight

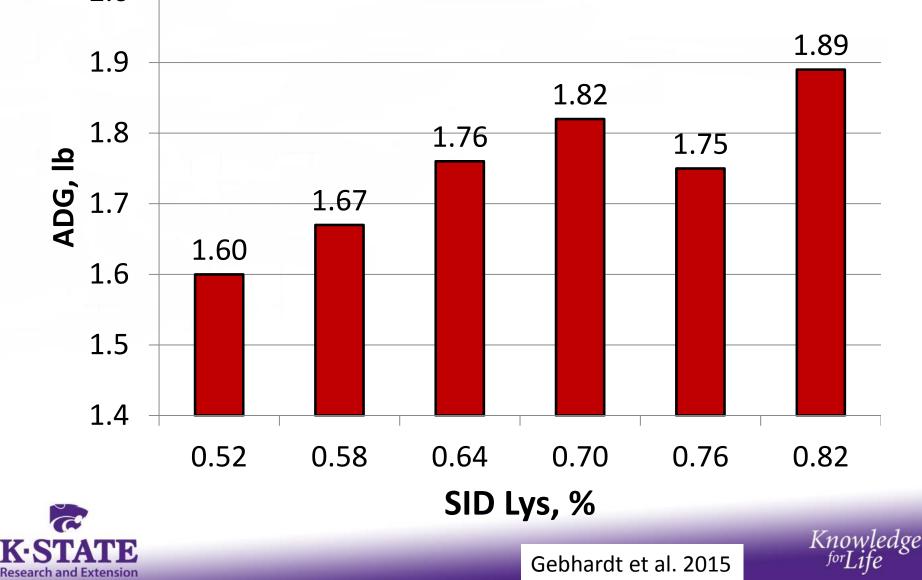
Goncalves et al., 2015

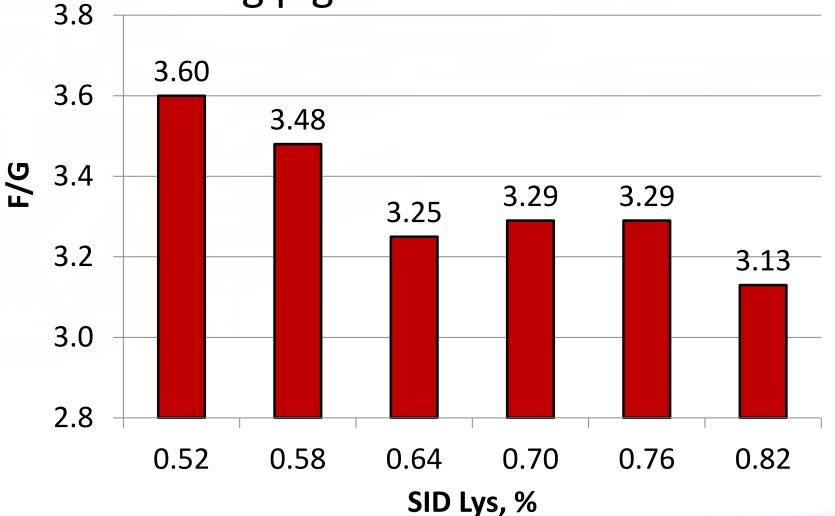
Knowledge

SID Val:Lys ratio at different target performance levels of 55 to 100 lb pigs

		Percent	of maximu	m perforn	nance, %	
Item	95%	96%	97%	98%	99%	100%
ADG ¹	58.9	60.5	62.3	64.5	67.3	74.4
G:F ²	<57.0	58.5	60.4	62.6	65.5	72.3
¹ QP equ	ation for AD)G =–1.15 +	- 4.13 × (SII	D Val:Lys rat	io) – 2.78 ×	(SID

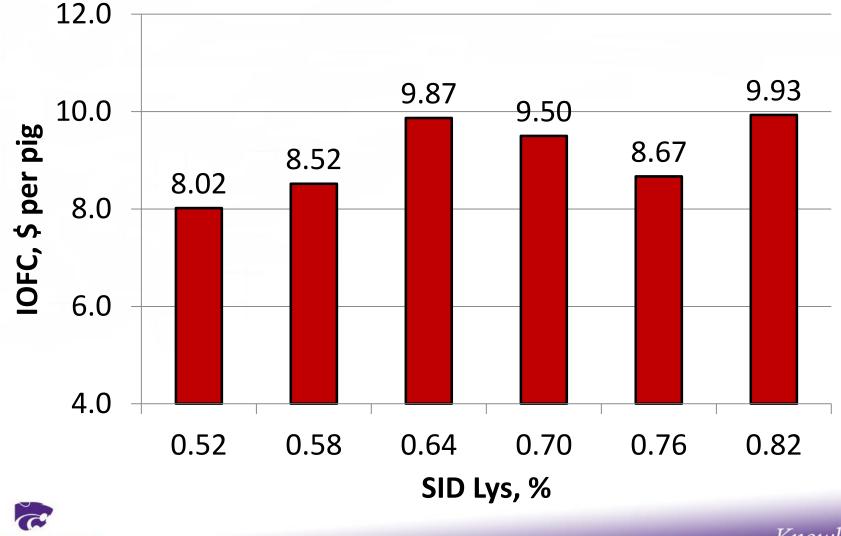
Val:Lys ratio)² + 0.012 × (Initial BW, kg), estimated to 35 kg pigs.


² QP equation for G:F = $-0.04 + 1.36 \times (SID Val:Lys ratio) - 0.94 \times (SID Val:Lys ratio)^2$.


Goncalves et al., 2015

SID Lysine in low crude protein diets for finishing pigs from 230 to 280 lb

SID Lysine in low crude protein diets for finishing pigs from 230 to 280 lb



Gebhardt et al. 2015

SID Lysine in low crude protein diets for finishing pigs from 230 to 280 lb

Research and Extension

Gebhardt et al. 2015

Knowledge ^{for}Life K-State home » College of Agriculture » ASI » Species » Swine » Research and Extension

Animal Sciences and Industry

www.KSUswine.org

ASI Home	A	S	I	Н	0	m	e
----------	---	---	---	---	---	---	---

People

About Us

Students & Programs

Species

Beef

Dairy

Equine

Poultry

Sheep & Goats

Swine

Research & Extension

Feeder Adjustment Cards

Calculators

Gestation Feeding Tools

Particle Size Information

Premix & Diet Recommendations

Swine Nutrition Guide

Marketing Tools

Teaching

People

Swine Day

Swine Podcasts

Swine Profitability Conference

Swine Facilities

Research & Extension

Services & Sales

Disciplines

Swine Research and Extension

The Kansas State University Swine Extension program takes practical swine nutrition research and works with producers to facilitate rapid adoption of technology by the industry. The program also works with producers in the area of environmental management of swine facilities.

K-State Swine Day

Swine Day 2015

Swine Nutrition Resources

- PEDv Resources
- Premix & Diet Recommendations
- Swine Nutrition Guide, November 2007 Edition
- Calculators (Ingredient, F/G, and Pig space tools)
- Feeder Adjustment Cards ٠
- Gestation Feeding Tools
- Particle Size Information
- Marketing Tools
- Aflatoxin fact sheet

Swine Research Index

K-State swine research publications can b

http://krex.k-state.edu/dspace/

Peer Reviewed Publications

Journal Abstracts

Swine Podcasts

Swine Day Publications

Swine Day Presentations

Ouick Links

- Pork Information Gateway
- Kansas Pork Association
- National Pork Board (NPB)
- NPB trucker Quality Assurance
- NPB Pork Quality Assurance NPB Pork Science
- Livestock and Meat Marketing (KSU AgEcon)
- KSU AgEcon AgManager
- Swine Feed Efficiency
- KSU Grain Science

Upcoming Events

International Feed Efficiency Conference Iowa State University October 21-22, 2015

Swine Day K-State Alumni Center November 19, 2015

SowBridge Brochure & Registration Form

PorkBridge Brochure & Registration Form

Swine Research Faculty

Dr. Duane L. Davis Swine Reproductive Physiology

Dr. Joel DeRouchey Swine nutrition & management

Dr. Steve Dritz

Dr. Robert D. Goodband Swine nutrition & management

Dr. Joe D. Hancock Monogastric Nutrition

Dr. Jim L. Nelssen Swine nutrition & management

Dr. Mike Tokach Swine nutrition

Dr. Jason Woodworth

Premix updates

Calculators and

tools

Journal papers

Podcasts

Swine Day

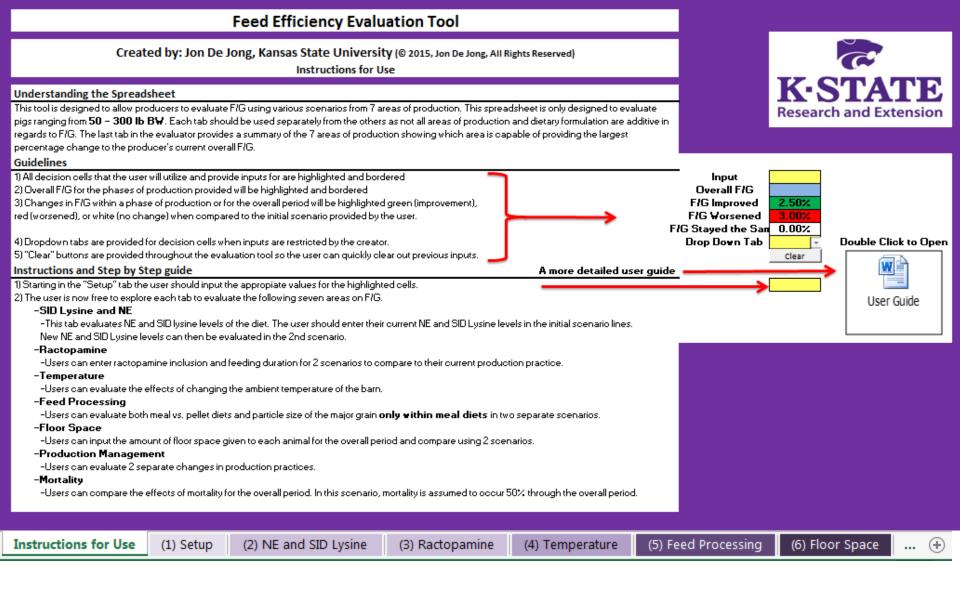
Abstracts

KANSAS STATE

Search web, people, directories Browse A-Z Sign

K-State home » College of Agriculture » ASI » Species » Swine » Research and Extension » Calculators

Animal Sciences and Industry

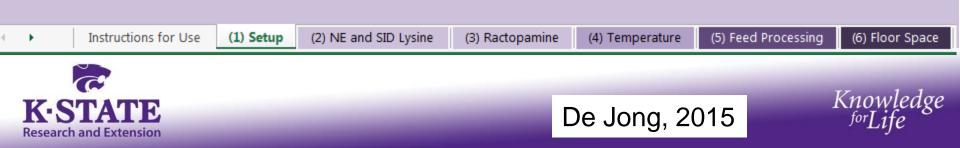

Gestation Feeding Tools Particle Size Information

Premix & Diet Recommendations Swine Nutrition Guide Marketing Tools

Research and Extension

AS	SI Home	Calculators		
Pe	eople	Feed Efficiency Evaluation Tool (v3 - Novembe	r, 2015)	000
Al	bout Us	Floor Space Impact on Pig Perform oce (v7 - 1	November, 2015)	000
St	udents & Programs	Iodine Value Prediction Spreadsheet		
Sp	pecies	KSU Fat Analysis calculator		-0
	Beef	DDGS Calculator (November, 2013)		
	Dairy	AA Pricing Spreadsheet		
	Equine		Feed Efficiency	
	Poultry	Meat and Bone Meal Calculator	reed Emolency	
	Sheep & Goats	KSU Feed Budget Calculator	Evaluation tool	
	Swine			
	Research & Extension	KSU Phytase Calculator		
	Feeder Adjustment Cards			
	Calculators			

forLife



Knowledge ^{for}Life

Step 1: Setup

Select Inputs	Clear	
Number of Dietary Phases	6	
Starting Weight, lb	50	C
Ending Weight, lb	300	
Sex	Mixed	
Diet Form	Meal	
Grain Particle Size, μ	550	+4
Ractopamine, g/ton	9	
Mortality, %	3.50%	
Floor Space/Pig, ft ²	7.2	
Current Overall ADG, lb	1.90	
Current Overall F/G	2.75	

ear	*Clears All Inputs					Pha	ises	
6		1	2	3	4	5	6	
50	Choose Starting Weight for All Phases	50	80	120	170	210	250	
00	*Choose ending weight of final phase	80	120	170	210	250	300	
ixed								
eal	Percentage Fines if Pelleted							
50	*Average particle size of major grain used							
9	Feeding Duration, d	17						
50%	*Mortality for the overall period							
. .2								
.90								
.75								

Example: Increasing energy, but not SID lysine

Step 2: Selecting Dietary NE and SID Lysine Leve
--

						Ph	ase
		1	2	3	4	5	6
Initial Weight, Ib		50	80	120	170	210	250
Ending Weight, lb		80	120	170	210	250	300
				Enter (Current N	E (NRC, 20)12) and S
Initial Dietary NE, kcal/lb (NRC, 2012)	Clear	1100	1100	1100	1100	1100	1100
Initial SID Lysine, %		1.08	0.95	0.82	0.73	0.66	0.84
Lysine Requirement for Gilts (Nitikanchana et al. 2015)		1.08	0.95	0.82	0.73	0.66	0.84
Lysine Requirement for Barrows (Nitikanchana et al. 2015)		1.08	0.93	0.78	0.68	0.62	0.84
Lysine Requirement for Mixed Sex adapted from: Nitikanchana et al.	2015	1.08	0.94	0.80	0.71	0.64	0.84
Initial F/G		2.05	2.27	2.58	2.95	3.36	3.09

Current Overall F/G	
2.75	

				Enter NE	(NRC, 20	12) and SI	D Lysine I			
New Dietary NE, kcal/lb (NRC, 2012)	Clear	1200	1200	1200	1200	1200	1200			
New SID Lysine, %	Clear	1.08	0.95	0.82	0.73	0.66	0.84	59	%	
Lysine Requirement for Gilts (Nitikanchana et al. 2015)		1.18	1.03	0.89	0.79	0.72	0.89			
Lysine Requirement for Barrows (Nitikanchana et al. 2015)		1.18	1.02	0.85	0.74	0.68	0.89			
Lysine Requirement for Mixed Sex adapted from: Nitikanchana et al. 2	2015	1.18	1.03	0.87	0.77	0.70	0.89	Scena i	o 1 Overall F/G	7
New F/G		1.96	2.16	2.47	2.81	3.19	2.90		2.61	
% Change		4.7%	4.6%	4.6%	4.7%	4.8%	6.1%		5.0%	

•	Instructions for Use	(1) Setup	(2) NE and SID Lysine	(3) Ractopamine	(4) Temperature	(5) Feed Processing	(6) Floor Space

Example: increasing energy and SID Lysine

	Step	2: Selec	ting Die	tary NE	and SID	Lysine L	evels	
						Ph	ase	_
		1	2	3	4	5	6	
Initial Weight, Ib		50	80	120	170	210	250	
Ending Weight, Ib		80	120	170	210	250	300	
				Enter	Current N	E (NRC, 20	012) and S	
Initial Dietary NE, kcal/lb (NRC, 2012)	Clear	1100	1100	1100	1100	1100	1100	
Initial SID Lysine, %		1.08	0.95	0.82	0.73	0.66	0.84	
Lysine Requirement for Gilts (Nitikanchana et al. 2015)		1.08	0.95	0.82	0.73	0.66	0.84	
Lysine Requirement for Barrows (Nitikanchana et al. 2015)		1.08	0.93	0.78	0.68	0.62	0.84	
Lysine Requirement for Mixed Sex adapted from: Nitikanchana et	al. 2015	1.08	0.94	0.80	0.71	0.64	0.84	Current Ov
Initial F/G		2.05	2.27	2.58	2.95	3.36	3.09	2.75

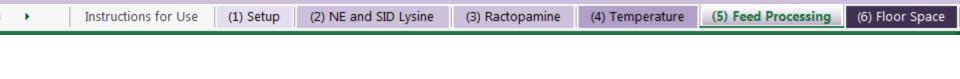
				Enter NE	(NRC, 201	L2) and SI	D Lysine	
New Dietary NE, kcal/lb (NRC, 2012)	ciana I	1200	1200	1200	1200	1200	1200	
New SID Lysine, %	Clear	1.18	1.03	0.89	0.79	0.72	0.89	7.8%
Lysine Requirement for Gilts (Nitikanchana et al. 2015)	_	1.18	1.03	0.89	0.79	0.72	0.89	
Lysine Requirement for Barrows (Nitikanchana et al. 2015)		1.18	1.02	0.85	0.74	0.68	0.89	
Lysine Requirement for Mixed Sex adapted from: Nitikanchana et al.	2015	1.18	1.03	0.87	0.77	0.70	0.89	Scena o 1 Overall F/G
New F/G		1.89	2.10	2.39	2.73	3.09	2.82	2.54
% Change		7.8%	7.4%	7.4%	7.4%	7.9%	8.7%	7.8%
Instructions for Use (1) Setup (2) NE and SID) Lysine	(3) Ra	actopami	ne (4) Temper	ature	(5) Feed	Processing (6) Floor Space

De Jong, 2015

Knowledge

Step 3: Ractopamine Inclusion and Feeding Duration							
	Current Scenario	Scenario 1	Scenario 2				
Ractopamine g/ton	9	9	0	Clear			
Duration, d	17	28		Clear			
Overall F/G	2.75	2.74	2.81				
% Change		0.32%	2.18%				
				-			
Instructions for Use	(1) Setup (2) NE and SID Lysin	e (3) Ractopamine	(4) Temperature (5) Feed Process	sing (6) Floor Space			

			Ste	e <mark>p 4: Effe</mark> c	ts of	f Effective E	nvironmen	tal Te
							Phase	
		1	2	3		4 5	6	
Initial Weight, lb		50	80	120	1	70 210) 250	
Final Weight, lb		80	120	170	2	10 250) 300	
Upper Critical Temperature ¹		81.5	80.3	78.8	7	7.2 75.4	8 74.2	
Estimated Temperature Requirement		75.9	74.3	72.3	7	0.3 68. ¹	5 66.5	
Lower Critical Temperature ¹		70.2	68.3	65.8	6	3.3 61.3	2 58.8	
Cumulative Days on Feed		19	41	66				_
					Sel	Overall F/G	ì	e
Current Ambient Barn Temperature	Clear	75.00	74.00	72.00		2.75		
Current F/G		1.88	2.17	2.53				
					ele	Overall F/G	ì % Change	P
Scenario 1 Ambient Temperature	Clear	85.00	84.00	82.00		2.83	3.00%	
Scenario 1 F/G		1.95	2.25	2.61				
	-1	65.00		T	ele	Overall F/G	ì % Change	
Scenario 2 Ambient Temperature	Clear	65.00	64.00	62.00		2.85	3.50%	
Scenario 2 F/G		1.98	2.26	2.62				
Instructions for Use (1) Setup (2)) NE and SID	Lysine (3)	Ractopamine	(4) Tempera	ature	(5) Feed Proces	ssing (6) Floor	Space


Evaluating feed processing technologies

52

Knowl

ledge

P	ellet vs. Meal Diets			_
	Initial Scenario	Scenario 1	Scenario 2	
Diet form	Meal	Pellet	Pellet	
				Clear
Percentage Fines, %	0	20.0	50.0	
Overall F/G	2.75	2.64	2.72	
% Change		4.04%	0.93%	

Evaluating feed processing technologies

	Particle Size of	Meal Diets		_
	Initial Scenario	Scenario 1	Scenario 2	
Grain Particle Size, μ	550.00	735	450	Clear
Overall F/G	2.75	2.81	2.72	Clear
% Change		2.03%	1.10%	

F	Instructions for Use	(1) Setup	(2) NE and SID Lysine	(3) Ractopamine	(4) Temperature	(5) Feed Processing	(6) Floor Space

KANSAS STATE

Search web, people, directories Browse A-Z Sign

K-State home » College of Agriculture » ASI » Species » Swine » Research and Extension » Calculators

Animal Sciences and Industry

Gestation Feeding Tools Particle Size Information

Premix & Diet

5

K-STATE Research and Extension

ASI Home	Calculators		
People	Feed Efficiency Evaluation Tool (v3 - November	r, 2015)	0000
About Us	Floor Space Impact on Pig Performance (v7 - N	lovember, 2015)	
Students & Programs	Iodine Value Prediction Spreadsheet	<	
Species	KSU Fat Analysis calculator		-0
Beef	DDGS Calculator (November, 2013)		
Dairy Equine Poultry	AA Pricing Spreadsheet Meat and Bone Meal Calculator	Floor space	
Sheep & Goats	KSU Feed Budget Calculator	ТооІ	
Swine Research & Extension	KSU Phytase Calculator		
Feeder Adjustment Cards			
Calculators			

Floor space calculator

	Adjustment	Input inf	ormation re	quired (Ca	n do five e	stimates)	
	observation	1	2	3	4	5	
Initial BW, lbs	50	50	50	50	50	50	
Final BW, lbs	280	280	280	280	280	280	
Floor space/pig, ft ²	7.0	7.0	7.8	8.8	10.0	11.7	
Observed ADG, lb	1.9						
Observed ADFI, lb	5.7						
k value	0.0255	0.0253	0.0282	0.0318	0.0362	0.0423	
Growth measurement es	timates						
ADG, lb/d		1.90	1.93	1.96	1.98	1.97	
ADFI, Ib/d		5.70	5.75	5.79	5.82	5.80	
G:F		0.333	0.336	0.339	0.341	0.340	
Feed/gain		3.00	2.98	2.95	2.94	2.94	
< → Intro F	loor space calcu	ator	Stocking d	ensity calc	ulator		
2							
STATE				hr 0045	-	Kno	w
earch and Extension			F10	hr, 2015		for	L1J

Research and Extension

dge

Floor space calculator

	Adjustment	Input info	rmation re	quired (Ca	n do five es	stimates)
	observation	1	2	3	4	5
Initial BW, lbs	50	230	230	230	230	230
Final BW, lbs	280	280	280	280	280	280
Stocking density, pigs/pen	26	26	24	22	20	18
Floor space/pig, ft ²	6.9	6.9	7.5	8.2	9.0	10.0
Observed ADG, lb	1.87					•
Observed ADFI, lb	5.7					
Pen width, ft	10	Pen, sq ft	180			
Pen length, ft	18					
k value	0.0250	0.0250	0.0271	0.0296	0.0326	0.0362
Growth measurement estim	ates					
ADG, lb/d		1.63	1.68	1.74	1.80	1.86
ADFI, lb/d		6.01	6.12	6.24	6.37	6.51
ADFI, lb/d G:F		6.01 0.272	6.12 0.275	6.24 0.279	6.37 0.283	6.51 0.286
G:F		0.272	0.275	0.279	0.283	0.286
G:F Feed/gain	Floor space	0.272 3.68	0.275 3.63	0.279 3.58	0.283 3.54	0.286 3.49
G:F Feed/gain	Floor space	0.272 3.68	0.275 3.63	0.279 3.58	0.283 3.54	0.286

Flohr, 2015

Knowledge ^{for}Life

Trp:Lys economic model for nursery and finishing pigs

Use this program to estimate the most economical Trp:Lys level given local market conditions. To improve accuracy, raw ingredients should be tested for total amino acids.

If increasing the SID Trp:Lys ratio does NOT improve growth

1) Is the lysine above the requirement? If lysine is above the requirement,

the optimal Trp:Lys ratio will be lower than predicted.

2) Do you have different nutrient loadings for tryptophan and lysine

than those used for the projections? Please see the ratios in the "Ingredient" tab.

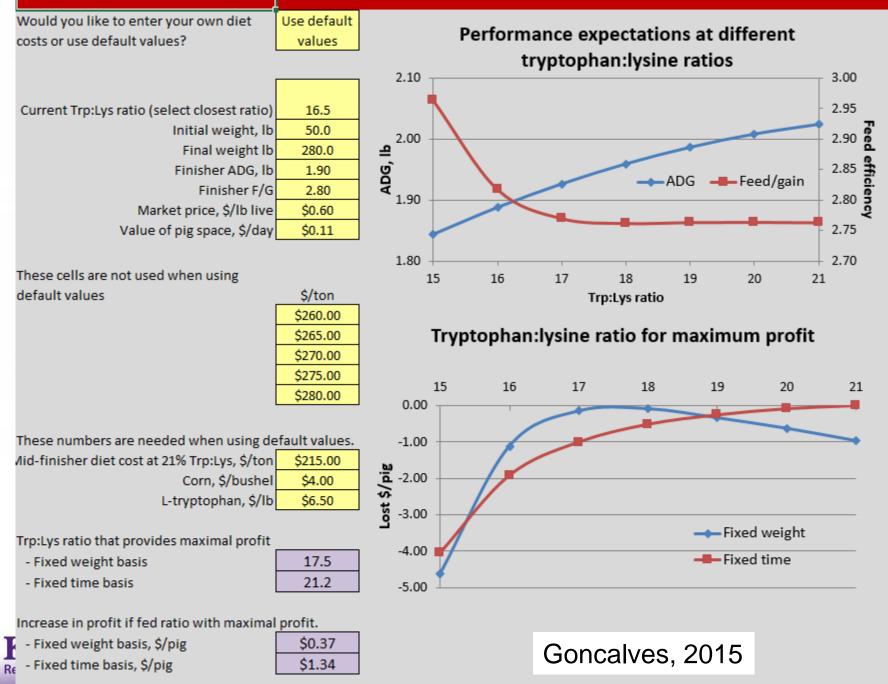
3) Is another amino acid deficient? If another amino acid,

such as methionine or threonine is deficient, it may be more limiting than tryptophan in the diet.

Select phase of production:

Prediction equations were developed under commercial conditions by Gonçalves et al. (2015) and published in the Journal of Animal Science(see references tab).

AJINOMOTO HEARTLAND, INC.



Goncalves, 2015

Economic Calculator for Optimal Trytophan:Lysine Ratio for Finishing Pigs

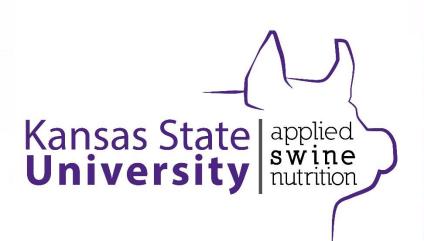
60

ge

2015 Swine Day Report

available at: www.KSUswine.org

- 42 papers
- 53 experiments
- 25,222 pigs



SWINE DAY 2015

THURSDAY, NOV. 19 K-STATE ALUMNI CENTER MANHATTAN, KANSAS

KSU Swine Day 2015

