

How accurate are different feed drops?

Berry sow feeder

Intak feeder

Automating sow lactation feeding idea from Iowa Select Farms

Beveled PVC screwed into sleeve tube welded into feeder

Second view

Now connecting to line directly without the feed box

Flank measurement to set feeding levels

Using the weight tape

STATE SOW WEIGHT TAPE

Relationship between flank measurement and body weight

Flank-to-flank	Weight	Flank-to-flank	Weight
inches	lb	inches	lb
25	122	37	342
26	135	38	367
27	149	39	394
28	164	40	421
29	179	41	451
30	196	42	481
31	214	43	513
32	232	44	546
33	252	45	580
34	273	46	616
35	294	47	654
36	317	48	693

Feeding of group-housed gestating sows

Conceived by: Dr. Steve Henry and innovative Kansas producers

Concept: Divide feed allotment into 5 to 7 feedings per day

Initial response: Producers love it! They believe there is less fighting and less variation in weight gain

Research plans: We will be testing the concept in the near future.

Effect of feeding frequency on gestating sow performance

20

16

12

8

4

0

Schneider et al., 2006

6 times

CV of weight gain, %

P=0.20

14.9

2 times

17.2

Effect of feeding frequency on gestating sow vocalization

Schneider et al., 2006

Effect of feeding frequency on gestating sow and gilt structure and aggressiveness

	<u>Aggressiveness</u>	<u>2 times</u>	<u>6 times</u>	<u>SE</u>	<u>P <</u>	
Sows	Skin	1.51	1.34	0.04	0.01	Small, but
	Vulva	1.08	1.03	0.02	0.04	significant
	<u>Structure</u>					responses
	Feet/Leg	1.21	1.12	0.03	0.01	III 30W3.
	Hoof	1.05	1.01	0.01	0.02	
	<u>Aggressiveness</u>					
Gilts	Skin	1.22	1.27	0.04	0.22	
	Vulva	1.12	1.12	0.01	0.92	
	<u>Structure</u>					
	Feet/Leg	1.09	1.11	0.01	0.12	Schneider
	Hoof	1.04	1.04	0.01	0.86	et al., 2006

Conclusion from 2 versus 6 times feeding

Gilts:

• Few growth, farrowing, or aggression differences

Sows:

- Few growth or farrowing performance differences.
- Feeding six times per day did result in a small but significant reduction in skin and vulva lesions and structural problem scores while increasing vocalization.

Increasing the feeding frequency from two to six times per day does not appear to have a dramatic negative or positive impact on performance or welfare of group housed gilts and sows.

Schneider et al., 2006

Effect of feeding frequency on growing pig (150 lb) performance

Effect of feeding frequency on growing pig (150 lb) performance

What to do with High Grain Prices?

Other ingredients follow grain price

- Added Fat right now, best option
- Dried whey and Corn?

Work with what you have: Improve F/G

Particle size & thorough mixing

- Feed budgets
- Feeder management
- Genetics
- Watch market weights

Particle size results with and without a flow agent 80 microns

Increasing Dried Whey Prices

- At \$0.25 per lb for SEW, Transition & phase 2
 - 1, 3, & 12 lb = \$7.39
 - 1, 5, & 20 lb = \$8.88
- At \$0.45 per lb
 - 1, 3, & 12 lb = \$7.83
 - 1, 5, & 20 lb = \$9.58

– watch your feed budgeting!

Effects of Biomin P.E.P. and Neoterra on growth performance of nursery pigs (d 0 to 42 d after weaning)

Sulabo et al., 2007

Relationship between Corn Price and Byproduct Ingredient Prices

Relative Cost

KSU Fat Analysis Spreadsheet

KSU Fat Analysis Spreadsheet

	Prices		
Corn, \$/bu	\$	3.50	
SBM, \$/ton	\$	190.00	
Fat, \$/cwt	\$	18.00	
Grind/mix/delivery, \$/ton	\$	12.00	

Prices
Carcass price **\$ 64.00**Est. live price
49.54

"It's pretty hard to beat a corn (milo)soybean meal added fat diet."

Watch Marketing Weights: Heavy Weight Packer Grinds

Watch Marketing Weights: Light Weight Packer Grinds

KSU DDGS Commercial Environments

- Nursery Pigs
 - 482 hd; initial weight 21.9 lb
 - Pigs fed 10% DDGS were 1.6 lbs lighter after 22 d
- Finishing Pigs (Exp. 1)
 - 1,050 hd; initial weight 104.9 lb
 - Pigs fed 0 or 15% DDGS had equal performance
 - Pigs fed increasing added fat (0, 3, or 6%) had improved performance
- Finishing Pigs (Exp. 2)
 - 1,038 hd; initial weight 102.1 lb
 - Pigs fed over 10% DDGS had reduced performance

DDGS and Ileitis benefits?

- Exp 1 No benefit for ileitis
- Exp. 2 Minor reduction in ileitis
- Exp. 3 No benefit for ileitis
- Final weight (lb) of challenged pigs in the three experiments

	<u>0% DDGS</u>	10% DDGS	20% DDGS	Reduction
Exp. 1	53.9	52.2	49.8	3%
Exp. 2	76.9	67.3		12.4%
Exp. 3	55.3	49.7		10%

Whitney et al., 2006a,b,c; University of MN

	DDGS Level, %				
	0	10	20	30	P <
ADG, Ib	1.90	1.89	1.82	1.78	0.01
Initial wt, Ib	62.8	62.8	61.9	62.2	
Final wt, lb	259.5	258.8	250.7	246.5	
Yield, %	73.35	72.80	72.08	71.09	0.01
Carcass wt, lb	190.4	188.4	180.6	177.3	
\$60 Carcass Price	144.21	113.06	108.77	106.64	
Gross Difference, \$		-1.16	- 5.83	-7.86	
Final BW CV, %	6.92	7.15	8.30	10.40	0.01
Loin depth, mm	56.5	53.9	54.8	51.6	0.02
lodine number	66.8	68.6	70.6	72.0	0.01

Whitney et. at, 2006

Effect of fat level and feeding duration before market on jowl fat iodine value

What is the "K" Value

- Stocking density will likely be legislated as an animal welfare standard on swine operations.
- Based on numerous studies evaluating stocking density, the "K" value, when multiplied by the weight of the pig, calculates the stocking density for any weight pig.

 $0.82 \text{ m}^2 = 20.4 \text{ (kg)} \times 0.0336$ (2.7 ft² for a 45 lb pig)

Effects of "K" Value (Stocking Density) on Nursery ADG - 45 to 55 lb

Goodband, unpublished

Effects of "K" Value (Stocking Density) on Nursery ADG - 14 to 55 lb

Results

- In this study, ADG only tended to numerically decrease when pig weight exceeded its calculated space allocation based on the suggested "K" value.
- The proposed "K" value of 0.0336 will need further refinement if it is to be used as a standard space allocation requirement.

